Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 847: 157548, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-1956327

ABSTRACT

Based on recent studies, passive sampling is a promising method for detecting SARS-CoV-2 in wastewater surveillance (WWS) applications. Passive sampling has many advantages over conventional sampling approaches. However, the potential benefits of passive sampling are also coupled with apparent limitations. We established a passive sampling technique for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater using electronegative filters. Though, it was evident that the adsorption capacity of the filters constrained their use. This work intends to demonstrate an optimized passive sampling technique for SARS-CoV-2 in wastewater using granular activated carbon (GAC). Through bench-scale batch-adsorption studies and sewershed deployments, we established the adsorption characteristics of SARS-CoV-2 and two human feacal viruses (PMMoV and CrAssphage) onto GAC. A pseudo-second-order model best-described adsorption kinetics for SARS-CoV-2 in either deionized (DI) water and SARS-CoV-2, CrAssphage, and PMMoV in wastewater. In both laboratory batch-adsorption experiments and in-situ sewershed deployments, the maximum amount of SARS-CoV-2 adsorbed by GAC occurred at ~60 h in wastewater. In wastewater, the maximum adsorption of PMMoV and CrAssphage by GAC occurred at ~60 h. In contrast, the adsorption capacity was reached in DI water seeded with SARS-CoV-2 after ~35 h. The equilibrium assay modeled the maximum adsorption quantity (qmax) in wastewater with spiked SARS-CoV-2 concentrations using a Hybrid Langmuir-Freundlich equation, a qmax of 2.5 × 109 GU/g was calculated. In paired sewershed deployments, it was found that GAC adsorbs SARS-CoV-2 in wastewater more effectively than electronegative filters. Based on the anticipated viral loading in wastewater, bi-weekly sampling intervals with deployments up to ~96 h are highly feasible without reaching adsorption capacity with GAC. GAC offers improved sensitivity and reproducibility to capture SARS-CoV-2 RNA in wastewater, promoting a scalable and convenient alternative for capturing viral pathogens in wastewater.


Subject(s)
COVID-19 , Wastewater , Adsorption , Charcoal , Humans , RNA, Viral , Reproducibility of Results , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Water
2.
Sci Rep ; 11(1): 15350, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1330152

ABSTRACT

The recent surge in the use of UV technology for personal protective equipment (PPE) has created a unique learning opportunity for the UV industry to deepen surface disinfection knowledge, especially on surfaces with complex geometries, such as the N95 filter facepiece respirators (FFR). The work outlined in this study addresses the interconnectedness of independent variables (e.g., UV Fluence, respirator material) that require consideration when assessing UV light efficacy for disinfecting respirators. Through electron microscopy and Fourier-transform infrared (FTIR) spectroscopy, we characterized respirator filter layers and revealed that polymer type affects disinfection efficacy. Specifically, FFR layers made from polypropylene (PP) (hydrophobic in nature) resulted in higher disinfection efficiency than layers composed of polyethylene terephthalate (PET-P) (hygroscopic in nature). An analysis of elastic band materials on the respirators indicated that silicone rubber-based bands achieved higher disinfection efficiency than PET-P bands and have a woven, fabric-like texture. While there is a strong desire to repurpose respirators, through this work we demonstrated that the design of an appropriate UV system is essential and that only respirators meeting specific design criteria may be reasonable for repurposing via UV disinfection.

3.
Sci Rep ; 11(1): 12279, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1265970

ABSTRACT

During the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs) were recommended to protect healthcare workers when providing care to infected patients. Despite their single-use disposable nature, the need to disinfect and repurpose FFRs is paramount during this global emergency. The objectives of this study were to (1) determine if UV treatment has an observable impact on respirator integrity; (2) test the impact of UV treatment on N95 FFR user fit; and (3) test the impact of UV treatment on FFR integrity. Ultraviolet (UV) disinfection was assessed in maintaining N95 FFR integrity. Two models of FFRs were exposed to UV fluences ranging from 0 to 10,000 mJ cm-2 per side and subsequently tested for fit, respirator integrity, and airflow. Inspection of N95 FFRs before and after UV treatment via microscopy methods showed no observable or tactile abnormalities in the integrity of respirator material or straps. Tensile loading tests on UV-treated and untreated respirator straps also demonstrated no impact on breaking strength. Standardized fit test methods showed no compromise in user fit following UV treatment. Evaluation of particle penetration and airflow through N95 FFRs showed no impact on integrity, and average filtration efficiency did not fall below 95% for any of the respirator types or fluence levels. This work provides evidence that UV disinfection does not compromise N95 FFR integrity at UV fluences up to 10,000 mJ cm-2. UV disinfection is a viable treatment option to support healthcare professionals in their strategy against the spread of COVID-19.


Subject(s)
Disinfection/methods , N95 Respirators , COVID-19/prevention & control , Health Personnel , Humans , Materials Testing , Ultraviolet Rays
4.
Sci Total Environ ; 760: 143346, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-915703

ABSTRACT

We are in unprecedented times with the ongoing COVID-19 pandemic. The pandemic has impacted public health, the economy and our society on a global scale. In addition, the impacts of COVID-19 permeate into our environment and wildlife as well. Here, we discuss the essential role of wastewater treatment and management during these times. A consequence of poor wastewater management is the discharge of untreated wastewater carrying infectious SARS-CoV-2 into natural water systems that are home to marine mammals. Here, we predict the susceptibility of marine mammal species using a modelling approach. We identified that many species of whale, dolphin and seal, as well as otters, are predicted to be highly susceptible to infection by the SARS-CoV-2 virus. In addition, geo-mapping highlights how current wastewater management in Alaska may lead to susceptible marine mammal populations being exposed to the virus. Localities such as Cold Bay, Naknek, Dillingham and Palmer may require additional treatment of their wastewater to prevent virus spillover through sewage. Since over half of these susceptibility species are already at risk worldwide, the release of the virus via untreated wastewater could have devastating consequences for their already declining populations. For these reasons, we discuss approaches that can be taken by the public, policymakers and wastewater treatment facilities to reduce the risk of virus spillover in our natural water systems. Thus, we indicate the potential for reverse zoonotic transmission of COVID-19 and its impact on marine wildlife; impacts that can be mitigated with appropriate action to prevent further damage to these vulnerable populations.


Subject(s)
COVID-19 , Pandemics , Alaska , Animals , Humans , SARS-CoV-2 , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL